Antimicrobial/Antimold polymer-grafted starches for recycled cellulose fibers.

نویسندگان

  • Zainab Ziaee
  • Liying Qian
  • Yong Guan
  • Pedram Fatehi
  • Huining Xiao
چکیده

In this work, an antimicrobial guanidine polymer (PHGH) was grafted onto starch as a carrier to form branched or grafted chains along the starch backbone. This grafting improved the antimicrobial properties and the adsorption of the starch on recycled cellulose fibers. Similar work was also conducted on bleached sulfite fibers for comparison. The results showed that the starch, grafted with 12 wt% PHGH, adsorbed more on recycled fibers than on sulfite fibers. By applying the antimicrobial-modified starch to recycled or sulfite pulps up to 20 mg/g, both antimicrobial and antimold performances of the papers were improved substantially. Additionally, the PHGH-modified starch increased the tensile index of papers, but decreased the tear index slightly. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were employed to investigate the morphologic changes of Escherichia coli bacteria and Chaetomium globosum fungi upon exposure to the PHGH-modified starch, thus demonstrating that the antimicrobial mechanism is based on the damage of bacterial membrane.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Review on Grafting of Biofibers for Biocomposites

A recent increase in the use of biofibers as low-cost and renewable reinforcement for the polymer biocomposites has been seen globally. Biofibers are classified into: lignocellulosic fibers (i.e., cellulose, wood and natural fibers), nanocellulose (i.e., cellulose nanocrystals and cellulose nanofibrils), and bacterial cellulose, while polymer matrix materials can be petroleum based or bio-based...

متن کامل

Novel Biocomposites from Microfibrillated Cellulose grafted with Poly(ε-caprolactone) – Synthesis and Characterization

Environmental concerns have led to a rapid growing interest in replacing traditional petroleum-based technology with more green alternatives. Cellulose, one of the main components in plants, is a biodegradable and renewable recourse. The use of cellulose fibers, instead of traditional fibers such as glass and carbon, offers a way to make more environmental friendly biocomposites. By replacing t...

متن کامل

Incorporation of Never-Dried Cotton fibers with Methylmethacrylate: A Gateway to Unique Transparent Board-Like Nanocomposites

For the first time, it is shown that water medium allows dissolved methylmethacrylate monomer to penetrate water-swollen natural nanoporous structure of never-dried cotton fibers (biological cellulose fibers). Unique cellulose copolymer nanocomposites are obtained by green nanotechnology process (solvent is water -ideal green solventand reaction conducted at 25oC). It was found that after only ...

متن کامل

Use of Recycled and Waste Fibers in Asphalt Concrete

A significant problem associated with asphalt concrete mixtures is the lack of durability resulting from an inadequate asphalt cement content. Additional asphalt cement added to increase durability results in flushing, bleeding and a significant loss In stability. Fibers have been used in stone matrix asphalt and open-graded friction course pavements successfully throughout Europe to allow high...

متن کامل

Reinforcing Poly(ε-caprolactone) Nanofibers with Cellulose Nanocrystals

We studied the use of cellulose nanocrystals (CNXs) obtained after acid hydrolysis of ramie cellulose fibers to reinforce poly(ε-caprolactone) (PCL) nanofibers. Chemical grafting with low-molecular-weight PCL diol onto the CNXs was carried out in an attempt to improve the interfacial adhesion with the fiber matrix. Grafting was confirmed via infrared spectroscopy and thermogravimetric analyses....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomaterials science. Polymer edition

دوره 21 10  شماره 

صفحات  -

تاریخ انتشار 2010